If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-62=0
a = 1; b = -3; c = -62;
Δ = b2-4ac
Δ = -32-4·1·(-62)
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{257}}{2*1}=\frac{3-\sqrt{257}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{257}}{2*1}=\frac{3+\sqrt{257}}{2} $
| 9(y-4)=36 | | 2(2y-1)=12 | | -2x+8=4.53 | | 7m-3-3(m+1)=-(7m-4) | | 15y+7=-20y | | 2(3x-3)=4(x+3) | | 7m-3-3(m+1)=-(7m+4) | | 90x=-3 | | 12x-5=110x | | 6^3x+4=36^2x-3 | | (8x)/3=2x+6 | | -9y+(8=27 | | 45-5x=2 | | 3x+4/2=6.5 | | 20x2-7x-6=0 | | (x-1)(x+1)*x*(x+2)=24 | | (x-1)*(x+1)x(x+2)=24 | | 3x+4/3=6.5 | | x+.05x=135 | | 4x+3=5x-2.5 | | 3b^2+19b=0 | | Y=1/2(x-3)^2-8 | | 2x+1-5x=9 | | 4x3=4x-2.5 | | (r+13)/(12)=1 | | 45-5x=7.5 | | Xx(-6)=12 | | 2(-6x)=x-3/4 | | -2+3-x=3x-15 | | 2x+1÷7=1 | | (-3+x)/2=-2 | | (4-6x)/11=2 |